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The first cumulant n(q) of the dynamic structure factor is calculated for freely jointed chains 
by applying the Fixman-Kovac formulation of chain dynamics with constraints. It is shown 
that the large q limit of n (q) for a chain of N bonds is proportional to a factor (2N + 3) I 
3 (N + 1) representing the fraction of the unconstrained degrees of freedom of the chain. The 
relevance of this result to spin-echo neutron scattering experiments is pointed out. As an 
alternative approach, an expression for n(q) is obtained with a formalism due to Titulaer and 
Deutch. 

I. INTRODUCTION 

The first cumulant n(q) for a freely jointed chain was 
earlier calculated I for all values of the momentum transfer 
wave number q by using the Kirkwood-Riseman diffusion 
operator .!f in the general expression2 

n(q)= (p*.!fp) , (1) 
(p*p) 

wherep(q) is the density of N + 1 beads in the Fourier space 
N 

p(q) = L exp(iq· R/L) . (2) 
/L=O 

The positions of the beads are denoted by Ro,RI, ... ,RN • The 
angular brackets ( ... ) denote the thermal average over the 
equilibrium distribution rPeq (RN) where RN denotes collec­
tively {Ro, ... ,Rn }. For a rigid dumbbell for which N = 1, the 
general expression for n(q) reported earlier I reduces t03 

n(q) =q2Dm{1 + (31T14) 1/2h * 
X [joCK) -K-]I(K)]}[1 +jO(K)]-I, (3) 

where Dm = kBT Is, K = qb, jk (x) is the spherical Bessel 
function of order k, andh * = s 11/b1T(121T) 1/2. In these defi­
nitions b is the fixed bond length, S the friction coefficient 
per statistical segment, kB T the thermal energy, 1/ the vis­
cosity of the solvent, D m the diffusion coefficient of an isolat­
ed monomer, and h * the draining parameter. 

The largeq limit of n(q)lq2 isDm according to Eq. (3). 
This limit was also found 1,2 for a freely jointed chain of arbi­
trary length, as well as for a Gaussian chain.2

•
3 It is indepen­

dent of whether or not the hydrodynamic interaction h * is 
taken into account. These observations are intuitively plau­
sible, because large values of q imply small distances at 
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which one would experimentally observe only the diffusion 
ofindividual monomers, independent of the rest of the chain. 
Implicit in the last statement however is the assumption that 
the interaction of a given monomer with the rest of the chain 
becomes negligible for vanishingly small displacements of 
that monomer. This is strictly true only for soft interaction 
potentials. In the case of a freely jointed chain with fixed 
bond lengths, the above result corresponds to treating the 
bond length constraint as the limit of a peaked soft potential 
in the calculation of n (q) from Eq. (1). In this procedure, 
the above limit is taken after the first cumulant is obtained as 
the short-time limit of d In S(q,t)ldt, where S(q,t) is the 
dynamic scattering function. 

It was pointed out by Stockmayer and Burchard4 that 
the inclusion of the bond length constraint in the dynamics 
of the chain at the outset leads to a different value for n (q) in 
the large q limit. Indeed, if one adopts a description of the 
rigid rod as used by Pecora5 to calculate the dynamic struc­
ture factor in the absence of hydrodynamic interaction, the 
appropriate operator for a rigid dumbbell is3 

.!f = - (DmI2) [V~c - q b 2
) j2(n)] , (4) 

where j 2 (.0) is the usual total angular momentum operator 
operating on .0, the unit vector characterizing the orienta­
tion of the rod, and V~c is the Laplacian operator operating 
on the position Rc of the center of mass. Substitution of Eq. 
( 4) into Eq. (1) yields 

n(q) = q2Dm [~+ ~jo(K) - K -11 (K)] [1 + jO(K)]-1 

(5) 

which incorporates the bond length constraints from the 
very beginning. A comparison of Eqs. (5) and (3) with 
h * = 0 shows that both yield for n(q)lq2 in the limit of 
q = 0 the same value Dm/2, which is the translational diffu­
sion coefficient of the rigid dumbbell. In the large q limit, 
however, Eq. (5) yields (i)Dm for n(q)lq2, whereas Eq. 
(3) gives D m • It was this discrepancy which was first pointed 
out by Stockmayer and Burchard.4 Mathematically it arises 
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from the interchange of the short-time limit in the definition 
of the first cumulant with the limit of the peaked potential to 
introduce the bond length constraint. Since that time, the 
calculation of the first cumulant for freely jointed chains of 
arbitrary length, including the bond length constraint in the 
dynamics, has remained an unfinished problem. It is the pur­
pose of this paper to attempt such a calculation. 

This problem is not only of theoretical interest. The in­
terpretation of neutron scattering experiments with the spin­
echo technique, in which the dynamic structure factor 
S(q,t) is measured directly6.7 in the q region where qb-l, 
requires theoretical values of n (q) for large values of q. It is 
precisely in this region where the inclusion of the constraints 
in the dynamics at the outset, or at the end as the limit of an 
appropriate hard potential makes a difference. Nicholson, 
Higgins, and Hayter7 were able to interpret their spin-echo 
experiments by using the expression for n (q) for Gaussian 
chains with only partial quantitative success, although the 
general trends of the data were understood in terms of exist­
ing theories. It is hoped that the refinement reported in this 
paper for the calculation of the first cumulant in the high-q 
region may improve the quantitative agreement between the 
spin-echo experiments and the theory. 

The foundations of the dynamics of stiff polymer chains 
were laid by Fixman and Kovac8 in 1974, Titulaer and 
Deutch9 in 1975, and Fixman 10 in 1978. Other relevant liter­
ature on chain dynamics with constraints includes work by 
Helfand, II who considered the motion of a simple system 
with two degrees of freedom, one constrained and one un­
constrained, and a recent paper by Perchak, Skolnick, and 
Yaris,12 who investigated numerically the effect of the Fix­
man potential on the chain dynamics, and presented a survey 
of the literature on chain dynamics with constraints. 

The derivations in this paper follow the formalism de­
veloped by Fixman and Kovac. 8.10 Their notation is adopted 
as much as possible in order to facilitate comparison. Section 
II is devoted to the derivation of the diffusion equation for 
the distribution function of the monomer positions of a softly 
jointed8 chain including the constraints, and to the identifi­
cation of the dynamical operator .!£ to be used in Eq. (1). 
This section may be considered as an extension of the Ak­
casu-GiiroF formalism to chains with bond length con­
straints. In the first part of Sec. III the application of this 
formalism to the calculation of the first cumulant in the free­
draining limit is demonstrated. The second part is devoted to 
the calculation of n(q) in the presence of hydrodynamic 
interactions and to the development of useful approxima­
tions. In Sec. IV we present our conclusions and some dis­
cussion. In the Appendix an alternative approach to the cal­
culation of the first cumulant, based on the expansion 
method of Titulaer and Deutch9 is introduced. 

II. DIFFUSION EQUATION WITH CONSTRAINTS 

The acceleration-free Langevin equations for the instan­
taneous positions of N + 1 beads of a chain in the presence of 
hydrodynamic interaction and bond length constraints can 
be written8 as 

Rp=Hpv'(Sv+C,qpj+Fv)' f.l=O,I, ... ,N, (6) 

where Fo, ... ,F N denote the usual random Langevin forces 
acting on the beads; PI"",PN are the constraining forces; and 
C is a (N + 1) XN matrix defined by 

Cpj = Opj - 0p,J-I' (7) 

where f.l = O,I, ... ,N and j = 1" .. ,N. The possibility of cou­
pling among different rigid bonds is allowed through a soft 
potential U(bl, ... ,bN ) and the corresponding forces S in Eq. 
(6) : 

(8) 

Fixman and Kovac8 refer to such a chain as "softly jointed." 
It reduces to the freely jointed chain when U = O. The hy­
drodynamic interactions among the beads are represented 
by the usual tensor Hpv: 

Hpv = S -lopvI + (1- opv)Tpv , (9) 

where T pv is the Oseen tensor, S is the friction coefficient of a 
bead, and I is a 3 X 3 unit matrix operating on the Cartesian 
components of vector quantities. Repeated Greek and Latin 
indices will always imply summation from 0 to N, and from 1 
to N, respectively, except when explicitly stated. Although it 
is possible to proceed otherwise, we prefer for simplicity to 
use the preaveraged hydrodynamic interaction from the be­
ginning, and to replace Hpv by HpyI where 

Hpv = S -1(Opv + 'Tpy) 

and 

( lOa) 

The indicated average is taken over the equilibrium distribu­
tion tf; eq for a softly jointed chain. For example, for Gaussian 
chains 13 

Hpv =S-I[Opy + (1-opy)'T(6hr)I/21f.l-vj-I/2] 

( lOb) 

and for freely jointed chains l
: 

Hpv =S-I[Opv + (1-Dpy )'T(2/Tr) i'" dXjo(x)IP-v 1
], 

(10c) 

where jo(x) = sin x/x and 'T = S /6117fb, which is equal to 
H 12• The Langevin equations (6) then become 

Rp = Hpv(Sv + CvjPj + Fy). (11) 

In order to eliminate the constraining forces Pj, and to deter­
mine the relevant statistical properties of the Langevin 
forces, we have first to obtain the Langevin equations for the 
bond vectors 

bj=CJ;.Rp . (12) 

The center of friction bo is defined by 

bo =.B ~I)Rp . (13) 

The eigenvector fJ ~1) is determined from 13 

fJ (I)H =v-IY(I) (14) 
p. p.v u-",' 

where the N + 1 components of the eigenvector a~1) are all 
unity,13 and Vo is the lowest Zimm eigenvalue, which is cal­
culated from 
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(15) 

Here and subsequently the superscripts on /3 ~I) and a~l) 
have been supressed. The eigenvectors are normalized as l3 

(16) 

The reason for separating the center of friction rather than 
the center of mass or any other translational coordinate is 
that the motion of the former is decoupled from the internal 
motions (in the preaveraged approximation). Multiplying 
both sides of Eq. (11) by /31' and summing, we obtain 

(17) 

where 

(18) 

which denotes the total Langevin force on the chain. The 
covariance matrix of fo is necessarily 

(19) 

so that the usual expression D = kB Tvo for the translational 
diffusion coefficient of the center of friction, defined by 
</abo/2 ) = 6Dt, is recovered. 

The Langevin equations for the bond vectors are ob­
tained by use ofEq. (12) as 

where the N XN matrix B is defined by 

B=CTHC 

and 

(20) 

(21) 

(22) 

In expressing SI' in terms of Sk we have used the fact that the 
soft potential U(bN

) is independent ofbo. We can express the 
Langevin forces FI' as a linear combination offo and a set of 
forces fl, ... ,fN as 

FI' =Cl'j~ + [H-1]l'yayvofo' (23) 

The reason for this decomposition is that the ~ with I> 1 
enter the Langevin equations for the bond vectors. They are 
obtained uniquely from F I' as 

fj = [B-1]jk [CTH]kI'FI' (j = 1, ... ,N) . (24) 

Substitution ofEq. (23) into Eq. (20) yields 

bj = Bjk (Sk + fk + Pk) . (25) 

Fixman and KovacS eliminated the constraining forces by 
using the fact that they are in the direction of the bond vec­
tors and by determining the N unknown proportionality 
constants from the bond length constraints d /bj /21 dt = 0: 

Pk = - MkmBmn • (Sn + fn) • (26) 

The matrix M km is defined through a sequence of other ma­
trices: 

R km = b k • bmBkm 
(no summation on k,m) . (27) 

M km = bkbm [R-1hm 

Eliminating Pk in Eq. (25) from Eq. (26), we obtain the 
Langevin equations for the bond vectors with constraints: 

bj = hjk • (Sk + fk ), (28) 

where 

h=(I-BM)B. (29) 

The following projection property of hjk is essential for the 
subsequent derivations: 

3 

L h j~b ~ = 0 (no summation on k) , (30) 
t=1 

where the superscripts refer to the Cartesian components of 
vectors and dyadics. 

The diffusion equation for the bond vector distribution 
function t/J(bN,t) can be obtained from Eq. (28) in terms of 
the covariance matrix Y ij defined by 

<f;(t)f!(t'» =2Yij8(t-t') (31) 

by following the procedure developed by Lax l4 as 

at/J =~{h~t['I' au +~(hrz "tz'I')]} (32) at ab j Jk 'f/ ab ~ ab :. mn fkn 'f/ • 

The covariance matrix tJ is determined by requiring that 
Eq. (32) is satisfied by the equilibrium distribution t/Jeq (bN

) 

appropriate to the chain model under consideration. In the 
case of the softly jointed chain model: 

t/Jeq (bN
) = (1/Z)exp( - /3U)tpo(bN

) (/3 -I = kB n , 
(33a) 

(33b) 

which incorporates the bond length constraints. It is now 
asserted that if 11j is chosen to satisfy 

(34) 

then t/Jeq also satisfies the steady state diffusion equation 
(32). Indeed, the substitution ofEqs. (33) and (34) into Eq. 
(32) leads to 

~(t/J h ~t a In tpo) = 0 
ab j eq Jk ab ~ 

and since 

(35) 

a In tpo a 
--= - b ~ - [b -18(b -/bk /)] (36) 
ab~ ab 

the use ofEq. (30) in Eq. (35) proves the equality. It also 
follows from Eq. (36) that 

h~t au = -k Th st alnt/Jeq . (37) 
Jk ab ~ B Jk ab ~ 

Using this identity and Eq. (34) in Eq. (32), we arrive atthe 
desired diffusion equation for t/J(bN,t): 

at/J = _ k T ~ • h • [t/J a In t/Jeq _ at/J] . (38) 
at B ab ab ab 

The diffusion equation for the center of friction follows from 
Eqs. (17) and (18) as 
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(39) 

Defining tP(bo,bN,t) as the distribution function of the entire 
chain and including all the degrees of freedom we finally 
write 

tP(bo,bN,t) = k T {v V2 .1. _ ~ 
at B 0 bo'f' abo 

J 

.hjk • [tP a~~eq - ~]}. (40) 

The dynamics of a softly jointed chain, including both inter­
nal and external motions, is completely described by this 
equation. Except for the inclusion of the center of friction 
coordinate, this equation is the same as that obtained by 
Fixman and Kovac.s,lo Although it is possible to calculate 
the first cumulant in Eq. (1) with Eq. (40), it is still desir­
able to obtain a more compact diffusion equation in coordi­
nate space for tP( RN + I ,t). This can be done by simply trans­
forming from (bo,bN) to RN + I using 

a a a 
aR =/3" ab+ C"j abo . 

" 0 J 

After some algebra we find 

atP(RN+I,t) = -kBT~'K • [tPalntPeq _ atP ] 
at aR" "V aRv aRv 

=~tP(RN+ t,t) , (41) 

where 

K = (I - HCMCT)H 

which is related to h by 

h=CTKC. 

(42) 

The adjoint ~ of the diffusion operator is introduced as 
usual through 

~ (tPeq Q) = - tPeq ~ Q, 

where Q is an arbitrary dynamical variable depending on 
R N + I. After a few steps one finds 

(43) 

It can be shown that .Y is self-adjoint when the scalar prod­
uct is defined as the equilibrium average, and that its matrix 
element between two arbitrary dynamical variables P and Q 
satisfies 

(p ~Q ) = k T ( ap . K • aQ }. 
B aR uv aR 

" v 

(44) 

The equilibrium average ([ ... ]) is to be performed with the 
distribution function tPeq given in Eq. (33) for a softly joint­
ed chain. There is no restriction on the form of the soft poten­
tial U(bN

). 

In the subsequent sections we present applications of the 
above general formalism. 

III. CALCULATION OF THE FIRST CUMULANT 

Choosing P and Q in Eq. (44) asp*(q) andp(q), and 
defining a q dependent mobility f..L (q) through 

f..L(q) = (p • .Y p)/q2kBT 

we obtain 

f..L(q) = (exp(iq • R"v)q • K"v • q) , 

(45) 

(46) 

where the unit vector q indicates the direction of q, and the 
summation rule on the repeated indices f..L, v from 0 to N is 
still being used. The first cumulant fi(q) defined in Eq. (1) 
is then 

(47) 

The static structure factor (p*p) in this equation is to be 
calculated with tPeq for a softly jointed chain. 

A. Free-draining limit 

In the absence of hydrodynamic interactions 

H"v = 8"vi5, and K"v reduces to 

Kl'v = 5 -I [8"vl - 5 -I (CMCT)"v] (48) 

with 

Mij = b j [R-Ihbj' (49a) 

Rij = 5 -Ib j • bj [CTClij , (49b) 

where 5 - ICT C corresponds to B in Eq. (21) in the free­
draining limit. Substituting Eq. (48) into Eq. (46) we ex­
press the mobility as 

f..L(q) = f..LI (q) - f..L2(q) , 

wheref..LI(q) = (N + 1)/5 denotes the mobility ofaflexible 
chain in the absence of hydrodynamic interaction, and 

f.t2(q) =5-2C"/exp(iq'R,,v)q'Mjk ·q)Civ· (50) 

The latter is the correction that arises from the inclusion of 
the bond length constraint in the dynamic operator. We con­
centrate below on the contribution of this term as function of 
q and N in various limits. 

1. Small q limit 

Since a" Cl'j = 0, f..L2 vanishes in the limit of q-D, and 
the first cumulant reduces to q2Dm/(N + 1) showing that, 
as expected the short-time diffusion coefficient is not affect­
ed by the inclusion of bond length constraints. 

2. Large q limit 

In this limit only the diagonal terms in Eq. (50), for 
whichf..L = v, contribute t0f..L2(q), and Eq. (50) reduces to 

f..L2(q--+00) = 5 -2 Tr(C(q' M· q) CT ) • (51) 

Since f..Lz (q) can depend only on the magnitude of q, we may 
average the right-hand side of Eq. (51) with respect to the 
direction of q, and thus obtain 

f..Lz(q--+oo) = (l/35 2)Tr(CMCT) , 

where 

Mjk =bj ·bdR-I]jk' 

(52) 

(53) 

Using the cyclic invariance of a trace and Eq. (49b) we find 
#2 (q--+ (0) = N /35. Hence, the large q limit of the first cu­
mulant in the absence of hydrodynamic interaction is ob­
tained as 

fi(q--+oo) = q2Dm (2N + 3)/3(N + 1) (54) 
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which is one of the main results of this paper. 
For a rigid dumbbell N = 1, and Eq. (54) yields 

(Vq2D m , i.e., the result found by Stockrnayer and Bur­
chard.4 In the long chain limit we find (j)q2Dm' which is 
significantly different from q2Dm for a flexible chain. It is 
noted that these results are valid for any softly jointed free­
draining chain, and are independent of the specific form of 
the soft potential U (bN

) as long as it is soft. We also note that 
the factor (2N + 3) 1 (3N + 3) is simply the fraction of the 
unconstrained degrees of freedom. 

3. Rigid dumbbell 

The full expression of n(q) for all values of q can be 
obtained exactly in this case by substituting C T = [ - 1,1], 
CTC = 2, R = S' -12b 2I, and M = (S'/2b 2)bb in Eq. (50). 
The result is identical to Eq. (5) which is obtained directly 
from Pecora's equation. 

4. Once-broken rod (N = 2) 

In the previous special cases we did not have to specify 
the soft potential to proceed in a general way. In the present 
case we have to set U = 0 in order to be able to perform 
eqUilibrium averages. This choice restricts the subsequent 
analysis to freely jointed chains. 

When N = 2 the matrix R - I becomes 

R- 1 = [lIb 2(4-fi2)] [~ ~], 
where fi is the cosine ofthe bond angle. Substitution of R- 1 

into Eqs. (49) and (50) yields after lengthy manipulations 

q2D [7 n(q) = __ m_ - + (21n 3)jo(K) 
(p*p) 3 

+ 4(1- 21n 3)jI(K)IK 

- 4(1-ln 3)j2(K) + f+ 1 dfi fiP(fi~] , 
-I 4-fi 

(55a) 

where K = qb and 

P(fi) = (filx)jl(x) - [(1 +fi)/2]j2(X) (55b) 

with x 2=2 (1 + fi )K. 
Using (p*p )_3, we find the large q limit as 

n(q-co) = (7/9)q2Dm, which also follows from the gen­
eral result in Eq. (54) with N = 2. In the large q limit the 
form of the soft potential does not play any role as pointed 
out earlier. 

5. An approximate expression for fl(q) 

In the general case of a freely jointed chain with an arbi­
trary number N of bonds, we resort to an approximation 
reminiscent of replacing the Oseen tensor by its preaveraged 
form: we replace the matrix R introduced in Eq. (49b) by its 
equilibrium average 2b 2]:. This simplification leads to 

Mjk = (S'/2b 2)8jkbb (56) 

in Eq. (50). Performing the summation on fi and v, and 
using 

(1/2b 2) (11 - exp( - iq ° bW(q ° b)2) 

= q2[ (1/3) - Jo(K) + (2/K) JI (K)] 

one obtains 

n( )~ q2D
m {2N +3 +N[' (K) -~. (K)]}. (57) 

q (p*p) 3 10 Kit 

This approximation coincides with the exact results present­
ed above in the small and large q limits for any N, and with 
the dumbbell result for any q. In Fig. 1 it is compared with 
the exact result for N = 2 given in Eq. (55) to test its valid­
ity. In the intermediate q region where K < 1 but qRa > 1, it 
yields n(q) = (Dm/12)b 2q4 which is the same as that ob­
tained by including the bond length constraints at the end.2

•
3 

The variation of n(q) as function of K calculated from Eq. 
(57) is compared with the flexible chain result2

•
3 

n(q) = q2Dm (N + l)/(p*p) (58) 

in Fig. 2. The static structure factor in the case of a freely 
jointed chain is to be calculated from 
(p*p) = (N+ 1)[1 +2GN(K)] where GN(K) is given 
byl.3.15 

G - -- -1.sL 1 - -1.sL ~ N . ( . 1 ;N) 
N - N + 1 1 - Jo 1 - Jo N . 

(59) 

B. Non-free-dralnlng case 

In this case also, the generalized mobility introduced in 
Eq. (46) can be expressed as 

fi(q) =fil(q) -fi2(q) , (60) 

where 

(61) 

and 

fi2(q) = (expUq 0 Rl'v)(HCq oM 0 qCT H)l'v) . (62) 

E o 
OJ 

C' ..... ...... 
C' o 

1.5r-----...,...-----.-----~ 

T=O 

(a) N=2 (Exact) 
(b) N=2 (Approximation) 0 

1.0 

a 8 8 8 i ..... ...... 
0 0 

(b)o ° 

0.5 

• , • Ii 8888 

O.OL-_______ ~ ______ -L ________ ~ 

0.1 10 100 

qb 

FIG. 1. Comparison of the exact [Eq. (55) 1 and approximate [Eq. (57) 1 
calculations of n (q) I if D m vs qb for the free-draining ( l' = 0) once-broken 

rod. 
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2.0r---------~----------r---------~ 

T=O 
(a) N=20 • 
(b) N=300 0 

(c) N=300 + 
+ + 

+ + (c) 

(a) 
0.0 ••••• -:.: 

0.1 

• 

+ 

+ 8 

S 

+ e 

,. (b) and (c) 

qb 

+ 

8 8 e 8 8Seee.-... 

(a) and (b) 

10 100 

FIG. 2. n(q)lfjDm vsqb using the approximate expression in Eq. (57) for 
(a) N = 20 and (b) N = 300, and (c) using Eq. (58) for N = 300, which 
does not include constraints in the dynamics. 

As before, IJ.1 (q) denotes the mobility in the presence of 
preaveraged hydrodynamic interaction when the con­
straints are included as the limit of a hard potential through 
the eqUilibrium distribution. The first cumulant associated 
with IJ.1 (q) was earlier calculated without preaveraging the 
Oseen tensor for all values of q using 

0l(q) = (kBTI(p·p»(exp(iq-Rjw)q-Hl'v -q) (63) 

by Akcasu and Giirol2 for flexible Gaussian chains, and by 
Akcasu and Higginsl for freely jointed chains. It is also pos­
sible to express16 0 1 (q) using Eq. (63) as a functional of the 
staticstructurefactorS(q) = (N + 1)-I(p·p).Sincethese 
results are well documented in the literature we do not repro­
duce them here. It is of course possible to calculate IJ.1 (q ) 
and 0 1 (q) directly without resorting to these general results 
in the present context using Eq. (61), which reduces in the 
case of freely jointed chains to 

IJ.1(q) =jo(qb)ll'-vIHl'v . (64) 

Since our main concern in this paper is the effect of in­
cluding the bond length constraints in the dynamics, we now 
concentrate on IJ.2(q) in Eq. (62) which accounts for this 
effect. We first consider a rigid dumbbell for which exact 
analytical results are easily obtained. 

1. Rigid dumbbell (N = 1) 

Substitution of H I'V from Eq. (10) into Eq. (64) yields 

IJ.1(q) = (2Is)[1 +1'jo(K)] , (65) 

where l' = (s 161T'T/b). To calculateIJ.2(q) we first show 

q-M-q=sCfi-b)2/2(1-1')b 2 

and the use « q - b) 2) = b 213 and 

«q-b)2 exp(iq-b» =b 2[jo(K) - (2/K)h(K)] 

to obtain 

IJ.2(q) =s-I(1-1')[(1I3) -joCK) + (2IK)jl(K)]. 

(66) 

Since ( p.p) = 2 [1 + jo (K) ] for a rigid dumbbell we obtain 
the first cumulant as 

O(q) = q2Dm [1 + joCK)] -1{(5/6) + jo(K)/2 - jl (K)IK 

+ 1'[ (116) + jo(K) 12 + jl (K)IK]). (67) 

In the absence of hydrodynamic interaction (1' = 0) 
this result reduces to Eq. (5), which was obtained directly 
from Pecora's equation (4). It differs from Eq. (3), which 
we reproduce here in the present notation for comparison 

O(q) = q2Dm [1 + jO(K)]-1 

X{1 + (3/2)1'[jo(K) -jl(K)IK]}. (68) 

The difference is due to the inclusion of the bond length 
constraints in the dynamics in Eq. (67). They both yield the 
same translational diffusion coefficient: 

Do = Dm (1 + 1')/2 . (69) 

Their asymptotic values as q-+oo however are different: 
o (q-+ 00 ) = q2Dm according to Eq. (68) and 

o (q-+oo ) = (5/6)q2Dm (1 + 1'15) (70) 

according to Eq. (67). We note that the effect ofthe hydro­
dynamic interaction persists even in the large q limit, and 
further modifies the Rouse value (Vq2Dm by a factor 
(1 + 1'15). We also note that Eq. (67) is not restricted to the 
preaveraged hydrodynamic interaction because there is no 
distinction between preaveraged and fluctuating hydrody­
namic interactions in the case of a rigid dumbbell. 

2. Diffusion coefficient for arbitrary N 

The complete expression for the short-time transla­
tional diffusion coefficient of a freely jointed chain follows 
from Eqs. (46) and (47) as 

Do= [kBTI(N+ I)2][aTHa- (1I3)LT(M)L], 

(71) 

where a = col [ 1,1, ... ,1] with N + 1 components, Mij is de­
fined in Eq. (53), and L = CTHa. With Eqs. (7) and (Wc) 
the latter can be written as 

Lk = (21'/11's) So"" dX[jO(X)k_jO(X)N-k+I]. (72) 

The first term in Eq. (71) was calculated before l •3•15 for a 
freely jointed chain. We reproduce its expression here for 
completeness, 

D~l)=Dm(N+l)-I[I+(4rhT) So"" dXGN(X)] , 

(73) 

where GN(x) was defined in Eq. (59). To calculate the sec­
ond term, representing the correction due to the inclusion of 
the constraints at the outset, we again approximate Rij in Eq. 
(27) by (Rij) = 2b2(1-1')8ij/s, and use 
Mij = 8ijs 12( 1 - 1') inEq. (71). After some steps one finds 

D[/l =Dm[4r/3r(1-1')]IN(x,y) , (74a) 

where 
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1 Loo Loo IN (X,y) = 2 dx dy 
(N + 1) 0 0 

(74b) 

where A ifo(x) andB ifo( y). We first note that in the case 
of a dumbbell Eqs. (73) and (74) yield, respectively, 
D61) = (Dm/2) (1 + r) and D62) = 0, in accordance with 
the previous exact calculations. In the case of the once­
broken rod (N = 2), one again finds from Eq. (74) 
D 62

) = 0, so that 

(75) 

The correction term is nonzero for N-,3. Indeed, we find 
from Eqs. (74) for N = 3, D62

) = Dmr/l92(1 - r). Ob­
taining D 61

) from Eq. (73) in Do = D 61) - D 62
) we find in 

this case 

Do = Dm [(!)( 1 + 23r18) - rl192(1 - r)] . 

The long chain limit of Do also follows from Eqs. (73) and 
(74) after some algebra as 

Do = Dm [N -I + N - I128r(i1T) 1/2 

- 2r InN IN2(1- r)1T] . (76) 

Hence, the inclusion of bond length constraints in the dy­
namics does not affect the short time diffusion coefficient 
whenN_oo. ThelogarithmicN dependenceinEq. (76) can 
be verified by first finding the large-N limit of dINldN with 
change of variables x 2 = 6u2 IN and r = 6v2/6. 

3. Large q limit of Il(q) 

The large q limit of PI (q) is easily obtained as 
PI (q-oo) = Tr H = (N + 1 )/5'. We use the approxima­
tion Mij = 5'8ijI2( 1 - r) to investigate the large q limit of 
P2(q) in 

P2(q-00) = (1I35'){N + Tr[ TCMCTH]) (77) 

which follows from Eq. (62) by retaining the diagonal terms 
only, and averaging q 0 M 0 q over q. After some steps one 
finds 

P2(q-00) = (N 135') [1- r + Y Nrl(1 - r)] , (78) 

where 

4 (00 (00 
Y N = r Jo dx Jo dy(1-A)(I-B) 

X AB [1 __ 1 ___ A_NB_N] 
1 -AB N(1-AB) 

(79) 

with A ifo(x) andB ifo(Y). ThefirstterminEq. (79) is 
evaluated numerically as approximately 0.082. The second 
term vanishes as 11 N for large N, and is significant only for 
very short chains. For N = 1 and N = 2, Y N = O. Hence, 
except for very short chains, the large q limit of the first 
cumulant is obtained from Eq. (47) with the above results as 

n( -00) = 2D 2N + 3 
q q m 3(N+1) 

X [1 + Nr (1 _ 0.082r)]. (80) 
2N+3 l-r 

In the case of a rigid dumbbell and once-broken chain 
n(q-+ 00) is obtained, respectively, as 
q2Dm (5/6)( 1 + r15) and q2Dm (7/9) (1 + 2rI7). It is ob­
served in Eq. (80) that the effect of the hydrodynamic inter­
action persists in the large q limit of n (q) even in the long 
chain limit. However, this is numerically a small effect, for 
example, forr = 0.217

•
18 corresponding to 5' 11lb = 3.77. The 

major effect of the constraints is still the factor (2N + 3)1 
3 (N + 1). Figure 3 depicts the large q behavior of 
n(q)/q2D m as function ofNwith r = 0.5. The latter value is 
chosen to magnify the effect of hydrodynamic interaction at 
large q. 

4. Finite q values 

The calculation of J.l2(q) and hence n(q) for finite val­
ues of q becomes cumbersome even with the approximation 
of replacing Rij by its equilibrium average at the outset: 

P2(q) = 2b 2( f _ r) [HC]JLj 

x<exp(iq.RJLv)(q o bj )2)[CTH]jv, (81) 

where summation over P,v = O,I, ... ,N and j = 1, ... ,Nis im­
plied, and where 

ifRJLV does not contain bj or - bj , and 

= b ]o(K)<IJL -vl-l)[Jo(K) - 2jl (K)IK] 

otherwise. The expression of HJLv is given in Eq. (lOc) for 
freely jointed chains. We computedp2(q) from Eq. (81), 
and PI C q) from Eq. (64) numerically and plotted, in Figs. 4 
and 5, nCq)lq2Dm as function of q for various values of N 
and with and without hydrodynamic interaction. 
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FIG. 3. Comparisonofn(q)/iDm vsqb forN= 10 with (r=O.5) and 
without (r = 0) hydrodynamic interaction, using Eqs. (64) and (81). 
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FIG. 4. 0. (q)/iDm vsqbwith hydrodynamicinteraction for various values 
of Nusing Eqs. (64) and (81). 

IV. CONCLUSIONS AND DISCUSSIONS 

In the preceding sections we have calculated the first 
cumulant of the dynamic structure factor at all values of q 
for a freely jointed chain by taking into account bond length 
constraints in the dynamics of the chain through the general 
formalism developed by Fixman and Kovac. 8 The main con­
clusion of the paper from an experimental point of view is 
that in the absence of hydrodynamic interaction the large q 
limit of the first cumulant O(q) is (2/3) q2Dm for long 
chains. For flexible chains this limit is always q2Dm with or 
without hydrodynamic interaction and irrespective of chain 
length. Hence, the inclusion of bond length constraints re­
duces the segmental diffusion coefficient Dm to a factor 

E o 
N 

C" ..... 

1.5.---------------,---------------, 

qb=1000 
(a) T=O 
(b) T=0.5 

0- 1.0 
C 

"----_____ ~(b~) __________ _ 

~ ____ (=a~) ____________ 1 

0.5'------------'--------__ ----' 
o 10 

N 

20 

FIG. 5. The large qbehavior of 0. (q)/iDm as function of Nwithout and 
with hydrodynamic interaction, using Eqs. (64) and (81). 

(2/3 )Dm • The physical origin of this factor is that a given 
bead in the freely jointed chain model is rigidly connected to 
the rest of the chain so that its number of degrees of freedom 
is reduced from 3 to 2. For finite chains, the center of mass of 
the rest of the chain is also diffusing, so that the apparent 
diffusion coefficient of a bead acquires an N dependence, and 
becomes [(2N + 3)/3(N + l)]Dm • The latter is the frac­
tion of the unconstrained degrees of freedom of the entire 
chain. The inclusion of the hydrodynamic interaction seems 
to enhance the apparent segmental diffusion coefficient 
somewhat, even in the long chain limit, but this effect may be 
due to an approximation introduced in the calculations of 
the first cumulant with hydrodynamic interaction. The use 
of constrained chain dynamics has no appreciable effect on 
the behavior of 0 (q) in the small and intermediate q regions 
for long chains. 

The importance of the change in the large q behavior of 
the first cumulant when constraints are included lies in the 
fact that spin-echo neutron scattering experiments explore 
S(q,t) and its first cumulant precisely in the transition re­
gion from intermediate to high q values where qb-l. Since 
the upper plateau of 0 (q) / q2 is about 2/3 of that obtained in 
the case of flexible chains, as used until now in the interpreta­
tion of these experiments,7 one may expect appreciable im­
provement in the agreement between theory and experiment 
with the new results, and in the values of bond lengths and 
friction coefficients extracted from comparison of data and 
theory in this q region. 

The use of the first cumulant in the interpretation of 
dynamic light and neutron scattering experiments requires 
some caution, as pointed out by Schmidt and Stockmayer19 

previously. When the dynamics of polymer solutions is de­
scribed by the full Liouville operator L, including both sol­
vent and polymer coordinates, the first cumulant vanishes as 
a consequence of time reversibility. Since the relaxation 
times of fluid modes are smaller than the internal molecular 
relaxation times, it is permissible to describe the dynamics of 
polymer molecules through the Smoluchowski equation for 
time scales of scatt~ring experiments designed to study only 
the internal and translational motions of the macromole­
cule. In this case, the first cumulant calculated with the dif­
fusion operator is nonvanishing, and provides a good under­
standing of the initial relaxation of S(q,t) in various q 
regions. The present calculations emphasize that the utility 
of the first cumulant for analysis of scattering experiments 
depends on the correct choice of the dynamical operator in 
the experimental time interval. As the rigidity of a polymer 
molecule increases, the relaxation times associated with the 
stiff coordinates grow shorter and shorter, and eventually 
become widely separated from the relaxation times of the 
other slower internal modes. If the experimental time scales 
are chosen to study only these slow modes, then the first 
cumulant must be calculated with a modified diffusion oper­
ator in which appropriate constraints are imposed at the out­
set. It is this procedure that has been followed in the previous 
sections of this paper. If, however, one is still interested in 
the relaxation of S(q,t) on time scales short compared to the 
relaxation times of the stiff coordinates, then the observable 
first cumulant should be calculated with the full diffusion 
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operator. A continuous transition from flexible to con­
strained coordinates can be implemented, as demonstrated 
by Titulaer and Deutch9 by introducing a hard potential that 
contains a parameter K such that in the limit K--OC) the con­
straints on the stiff coordinates are recovered. However, the 
order of this limit and the short-time limit inherent in the 
definition of the first cumulant: 

n(q) = -lim din S(q,t)ldt 
t-+O 

becomes important, and two different results for n(q) are 
obtained depending on their order, as pointed out by Stock­
mayer and Burchard.4 In order to clarify this point further 
we consider the following equation obtained by the projec­
tion operator techniqueZ

; 

--,-,q:..:...., -'- = - n(q)S(q,t) + du K(q,u)S(q,t - u) , dS( t) it 
~ 0 

(82) 

whereK(q,t) is the memory function. The initial relaxation 
ofS(q,t) is always determined by n(q) for any finite value of 
K, for the second term vanishes as t-D. However, if the 
K -- OC) limit is taken first, the memory function approaches a 
delta function Ko(q)o(t), so that the initial relaxation of 
S(q,t) is determined in this limit by n(q) - Ko(q). The first 
cumulant calculated with the modified diffusion operator 
including the constraints directly yields n (q) - Ko (q). The 
application of the Titulaer and Deutch expansion method is 
presented in an Appendix. 

ACKNOWLEDGMENTS 

One of us (A.Z.A.) expresses his gratitude to the Insti­
tute of Macromolecular Chemistry of the University of Frei­
burg and the SFB of Deutsche Forschungsgemeinschaft for 
a guest professorship, and to Professor W. Burchard and Dr. 
K. Huber for their hospitality during his stay in Freiburg. 
The Dartmouth workers thank the National Science Foun­
dation, Division of Material Research, Polymers Program, 
for support under Grants No. DMR 7'6-22987 and No. 
DMR 79-13227. 

APPENDIX: CALCULATION OF THE FIRST CUMULANT 
BY THE TITULAER-DEUTCH METHOD 

Here we follow the Titulaer-Deutch method,9 devel­
oped by them for calculating the intrinsic viscosity, as an 
alternative approach to the first cumulant for chains with 
constraints. 

The diffusion equation in full coordinate space includ­
ing all the degrees of freedom is i = pj) Iwhere 

pj) 1= L Vi • Dij • (Vj 1-IVj Inle) . 
i,j 

The dynamic scattering function is defined by 

S(q,t) = (p*(O)p(t», 

where 

p(t) = p(q,t) = L exp [iq • R; (t)] . 
j 

(AI) 

Introducing a self-adjoint operator :£ such that 

pj) ( Ale) = -Ie :£ A, where A is an arbitrary function of 
the coordinates, we obtain 

S(q,t) = L C~ exp( - Am t) , 
m 

whereAm are the eigenvalues associated with the eigenfunc­
tions 1m of 

:£ 1m = -Amlm (A2) 

and 

(scalar product) . (A3) 

The potential energy U is the sum of a soft potential U (s) and 
a hard potential which is a generalization of the Frankel 
dumbbell model, i.e., 

U = U(s) + (J..) K ± GabSa Sb , 
2 a,b= 1 

where Sa represents a deviation of a hard coordinate "a" 
from its equilibrium value, and Gab is a positive definite ma­
trix, which may be a function of the configuration of the 
system. 

In order to determine the eigenfunctions and eigenval­
ues in the limit K--OC), the quantities :£, 1m' and Am are 
separated into sums of terms according to their order in 
K-j/z: 

:£ = :£(-Z) + :£(-1) + :£(0) + 
1=/(0) + 1(1) + I(Z) + ''', 
A = A (- Z) + A (- I) + A (0) + 

The leading eigenvalue equation is 

:£(-Z1<,:;) = _A~-Z)/<':;), 

with 

(A4a) 

:£(-Z)= ± °Dab ~~-{3K ± 0GabDbcSa ~ 
a,b= 1 aSa aSb a,b,c aSe 

and 

°Dab = [Dab]{S}=o' 

Titulaer and Deutch solved Eq. (A4), obtaining 
h 

A (-Z)(n"nZ, ... ,nh ) = - 13K L nk jl(k) , 
k'=l 

(A4b) 

= C(nl,· .. ,nh ) II Hnk [(/3Kjl(k) ) 112p'(k) So ] , (A5) 
k 

where P ~k) is a right eigenvector of the nonsymmetric ma­
trix l:b °GaboDbe: 

~ 0Gab 0D pe po £.. be (k) = jl(k) (k)' 
b,e 

LP~k) °DabPtm) =Okm . 
a,b 

In order to estimate em, p is expanded around {s} = 0 as 
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Substitution ofEqs. (AS) and (A6) into Eq. (A3), yields 

Cm = f d{q}OPf~)(L nk = 0) oJ. oJ + O(K- I
/
2

) , 

= O(K- n12 ) 

with n = l:k nk • Thus for n>l, 

C!, exp( - Am t)-o as K---+oo • 

In other words, only the n = 0 set contributes to S(q,t) as 
K---+oo. From Eq. (AS), the eigenfunctions for this case, de­
signated by gm' involve soft coordinates only. Titulaer and 
Deutch's analysis shows that the eigenvalue equation for gm 
is 

(A7) 

where 
h 

Dij =oDij - L °Dia(oDh-l)abODbj 
a,b= I 

with Dh denoting the restriction ofD to the hard subspace. It 
should be noted that Eq. (A7) is written in the full configu­
ration space, as is Eq. (A2). Thus, 

S(q,t) = [~C!, exp( -Amt)]n=o 

= L (op, g~»2 exp( - A ~)t) , 
m 

(A8) 

The linear term in t is obtained by the use of a projection 
operator ° 9 : 

°9 A = 0p(Op.,op) -1(Op., A) . 

Multiplying Eq. (A7) with (op., g~» and summing over m 
we get 

(A9) 
m 

Next operating with 9, mUltiplying by 0p., and taking the 
equilibrium average we obtain 

= _ LA~)(Op*,g~»(op.,op)(op*,Op)-I(Op.,g~» 
m 

m 

(AlO) 

The third equality is obtained by multiplying Eq. (A9) by 
0p. and taking the equilibrium average. Similarly, from Eqs. 
(AI) and (A2) we can obtain 

(p·,Yp) = - LAmC!,. 
m 

This is the result for the first cumulant of S(q,t) that is ob­
tained by first calculating the initial slope and then taking 
the limit K---+ 00 • In the present method the order of these two 
limits is reversed, and the right-hand side is obtained as 

(p·,Yp) = - (~AmC!, )n=o 

-(~AmC!')n=I' K---+oo. 

The first term is just the one we have calculated in Eq. 
(A 10). The second term is the correction term due to the 
inclusion of the constraints in the dynamics. 

Finally, as shown, by Titulaer and Deutch, ~ is the same 
operator used by Fixman and Kovac, written in Cartesian 
coordinates. 
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